Tutorial

Valuing flexibility in telecom infrastructure projects using real options thinking

Sofie Verbrugge Mathieu Tahon Simon Evenepoel

Networks 2012 Tuesday Oct 16th, Rome, Italy

Deployment of a wireless network

Example case of investment problem with inherent flexibility

LTE deployment

Some background

- Peak rates
 - 300 Mbps downlink
 - 75 Mbps uplink
- Scalable carrier bandwidths
 - From 1.4 MHz to 20 MHz
- FDD and TDD

LTE technology

Features

Different bandwidths

- Higher bandwidth
 - Higher bit rate
 - Lower range

LTE technology

Features

Different bandwidths

- Higher bandwidth
 - Extra users
 - Lower range

Case study

Deployment of LTE

- In 20 MHz band
- Offering 11.3 Mbps (in DL)
- BS reach = 780 m

in Ghent

- 243.366 inhabitants
- 156.2 km²

Collect input

for the investment problem at hand

Area input

- 243.366 inhabitants
- 156.2 km²

Technology input

- In 20 MHz band
- Offering 11.3 Mbps (in DL)
- BS reach = 780 m

Cost input

for wireless technology

Parameter	Cost	unit	Reference
License cost	€2	Per inhabitant	[1]
Base station	€50.000	Per BS	[2]
Installation cost	€4.000	Per BS	[2]
Rent location	€3.000	Per BS	[2]
Maintenance	€5.000	Per BS	[2]

[1] BIPT. (2012). PRESS RELEASE BIPT makes the results of the 4G auction public, (November 2011), 1–2. Retrieved from http://www.bipt.be/ShowDoc.aspx?objectID=3639&lang=en
[2] J.Verstuyft (2011) Selection and evaluation of the optimal wireless technology for a mobile network operator

Traffic model

indicates how many traffic we expect on the network

Initial bit rate offered	1,5 Mbps
Overbooking ratio	1:20
Expected traffic growth	40%

Implications:

- Traffic growth will result in extra BS
- Fiber lease cost will grow with traffic

Customer uptake

is modeled by Gompertz S-shaped adoption

ARPU - €20 per month

[3] http://afr.com/p/business/technology/uptake_hanging_on_the_telephones_HhQoW6hT7Yy4sAnL6iOqWN

Model costs and revenues as a second step

Base station dimensioning

indicates # base stations depending on areas and # customers

Customer dependent Area dependent

$$\#BS = MAX \left(\frac{area}{range_{BS}}, \frac{customers}{customers/BS}\right)$$

Base station dimensioning

results in total number of base stations installed

Backhaul dimensioning

results in required backhaul fiber length

$$(\#BS-1)*range_{BS}*2$$

- CO located at BS
- Overhead length
- Lease cost
 - €1/Gbps/m/year

Backhaul traffic

indicates required capacity over backhaul connections

Instantaneous traffic

customers

Evaluate cost versus revenues as a third step

Capital expenditures

indicate depreciable investment cost

Operational expenditures

indicate recurring costs

Total cost sum CapEx and OpEx

bbt

Revenues

are related to the number of customers

NPV analysis

sums discounted cash flows

NPV at year 10 = €-84.999

bbt

Refine the analysis as a fourth step

Impact of uncertainty

on expected market potential

Impact on

- # BS
- Traffic \rightarrow fiber lease cost

bbt

Result can be very different

under different uptake assumptions

Impact of uncertainty

on expected traffic growth

Impact on

- # BS
- Fiber lease cost

Result can be very different

under different traffic growth assumptions

Results are even more different

under combined market potential and traffic growth assumptions

From discrete to continuous uncertainty

by adding big amount of scenarios

bbt

From discrete to continuous uncertainty

shows range of results, representing range of scenarios

Density distribution of results

indicates mean value and deviations

bbt

Density distribution of results

leads to helpful interpretations

bbt

Combined uncertainties

on adoption and traffic growth..

Adoption

Traffic growth

bbt

Combined uncertainties

lead to combined impact on results..

36

bbt
Conclusion

on the use case of LTE deployment in Gent

The project is unprofitable

- Negative payoff under initial conditions
- Very sensitive to input

But the operator has flexibility

- Deploy network in another city
- Stop project if it turns out unprofitable
- Offer differentiated services
- Use other technology

Should I deploy the network in other cities?

✓ Is it worth more paying for a larger ✓ wireless license?

ibbt

Deploy in other cities

in Antwerp

- 483.505 inhabitants
- 204.5 km²

Minor differences with previous case

- Deployment in Antwerp in year 4
 - Higher initial license cost
 - Extra CapEx and OpEx
- But also larger market
 - Higher potential revenues

Result from deployment in other cities

But what if operator has flexibility?

1. He can do an extra deployment/ expand the deployment

Extra deployment only

- If positive impact on case
- Impacted by uncertainty
 - Adoption
 - Traffic growth

Uncertainties

Adoption

Traffic growth

ibbt

Flexibility to expand has a positive impact

- Expected payoff
 - + 22%
- Risk
 - Higher probability of positive case +0.7%
 - Mean negative -3% (license cost)

VERSITEI

Flexibility to expand

shows a shift to a more positive result

UNIVERSITEIT GENT

ibbt

Do I continue with the operation of the wireless network?

✓ Do I stop and sell my license if it is not ✓ viable?

ibbt

What if operator has flexibility?

2. He can abandon the project

If outlook is negative

- Abandon the project
- Cut losses
- Gain revenues from
 - License sale
 - Scrap value of equipment (50%)

Flexibility to abandon

shows a dual effect on result

- Expected payoff
 - + 19%
- Risk
 - No impact on positive probability
 - Clear that tail is cut
 - Mean negative +20%

Flexibility to abandon

shows a cut in the negative tail in the expected result

50

bbt

But what if operator has flexibility?

3. He can install his own backhaul infrastructure

Buy-or-lease decision

- Infrastructure installation is expensive
- Only interesting under large traffic volumes
 - High uptake
 - High traffic growth
- Requires fiber dimensioning
- Installation in Y4

Parameter	Cost	Unit
Fiber	€0.20	Per meter
1:32 splitter	€500	Per 32 fiber
L2 switch	€650	Per Central Office
Power supply	€700	Per Central Office
Optical port	€15	Per splitter
OLT card	€2.000	Per 8 ports
Shelf	€5.375	Per 3 cards
System rack	€600	Per 4 shelves
ODF slot	€20	Per splitter
ODF rack	€800	Per 2048 slots

Buy-or-lease decision

bbt

Flexibility to deploy on own backhaul

shows a negligible impact on result

- Expected payoff
 - + 0.007%
- Risk
 - No impact

/ersitei1

But what if operator has flexibility?

4. He can differentiate between customers

- Sell high-speed subscriptions
- Will require capacity upgrade
- Customers with higher ARPU
- Decide in Y4

Flexibility to differentiate between customers

shows a positive impact on the result

- Expected payoff
 - + 13.8%
- Risk
 - Higher probability of positive case (+1.8%)
 - No impact on mean negative (no option cost)

61

ibbt

Combined flexibility

to expand and switch to own backhaul

- Expected payoff
 - + 22.3%
 - Buying backhaul creates value

Risk

- Higher probability of positive case (+0.7%)
- Mean negative -3% (license cost)

Uncertainty and Flexibility

are typical in real investment problems

Uncertainty in telecom planning: from case study

- Adoption
- Traffic growth

Uncertainty in telecom planning: more examples

- Technological change
 - alternative technologies
 - improved standards
- Competition uncertainty
 - competitor entry
- Adoption uncertainty
 - potential
 - timing
 - speed
- Regulatory changes
 - Licensing
 - Radiation limits
 - corporate governance standards
 - forced network unbundling
- Component price evolution
 - resource price inflation
- Traffic intensity uncertainty
 - OTT services
 - geographical concentration of usage (events)
- Equipment lifetime uncertainty
- Borrowing capability
- Willingness to pay/ARPU evolution

Sources of uncertainty in telecom planning

Ernst & Young – 2012 – Top 10 Risks in Telecommunications 2012 Online: <<http://www.ey.com/GL/en/Industries/Telecommunications/Top-10⁶ risks-in-telecommunications-2012>>

Sources of uncertainty in telecom planning

allow to classify typical uncertain parameters

Compliance Threats		Operational Threats		
 Regulatory change Corporate governance standards Radiation emission 		 Technological change Traffic Intensity uncertainty Equipment Lifetime uncertainty 		
standards	Telecom Uncertainty			
Strategic Threats		Financial Threats		
 Competition uncertainty Adoption uncertainty Willingness to pay evolution 		 Component price evolution Evolution of borrowing capacity 		

Impact of uncertainty on decision making

when the input is uncertain, the output is uncertain as well

Input information is uncertain for different reasons

- Inherently
 - Aleatoric uncertainty
- Data unavailable
 - confidential
 - costly predictions
- Timing issues
 - Will become available at t>0

Impact of uncertainty on decision making

when the input is uncertain, the output is uncertain as well

Different ways to model input uncertainty

Sources of uncertainty, in the case

estimated adoption between high and low extreme

ADOPTION POTENTIAL

[1] Stragier et al. "A Priori Forecasting of FTTH uptake", 11th Conference of Telecommunication, Media and Internet Techno-Economics (CTTE), 2012

Sources of uncertainty, other possibilities timing of the adoption (position of inflection point)

ADOPTION TIMING

Sources of uncertainty, other possibilities adoption rate (steepness of the curve)

ADOPTION RATE

Sources of uncertainty, in the case

triangular between high and low extreme

TRAFFIC GROWTH

Sources of uncertainty, other possibilities

changes in competitive setting

COMPETITOR ENTRY

Sources of uncertainty, other possibilities

BASE STATION PRICE EVOLUTION

[1] Borgart T. Olsen and Kjell Stordahl, Models for forecasting cost evolution of components and technologies", Telektronnikk 4, 2012

Sources of uncertainty, other possibilities

Gaussian distribution around mean expected lifetime

BASE STATION LIFETIME

Impact of uncertainty on decision making

when the input is uncertain, the output is uncertain as well

Ways to represent impact of input uncertainty in output

Impact of uncertainty

of input parameters on output values

Sample case

Impact of uncertainty

of input parameters on output values

Crowdsourced Wi-Fi project Ghent

Flexibility during the project course can help to reduce the effect of the uncertainty

Types of flexibility

ACT

INV<u>EST</u>

- Expand geographic coverage
- Upgrade production capacity
- Improve product portfolio

DISINVEST

- Decrease geographic coverage
- Disinvest in production capacity
- Withdraw from market

LEARN

Postpone decision

Trial project

Market research

Real Options

Indicate flexible options in real investment projects

Origin of Real Options is in financial options

An option gives the buyer the right to buy or sell an asset for a predetermined exercise price over a limited time period.

A real option gives the manager the possibility to change the course of the project at a certain cost during the project's lifetime.

What are Real Options?

Real options

- Investment project over longer period
- Uncertain future
- Capture the value of managerial flexibility

Real options as an extension of NPV

Example

2 projects having the same NPV Intuitively choose the project which gives the most possibilities later on

Weak aspect of NPV evaluation Assumes strict planning, with no flexibility

Real projects

Anticipate on changing market circumstances

Categories of real options

based on the 7S framework

LTE deployment case study

Roll-out in additional city

Deploy own backbone infrastructure

Differentiate between customers

Stop and sell off license

Real Options in Telecom

Telecom examples

Technology upgrade, e.g. ADSL to

Adapting network rollout scenario

Lease wavelengths instead of dark fiber in

Withdrawal from ISDN market

87

(Source: Copeland and Keenan, 1998)

Real Option Category	Real Option Type	Description	Telco examples
Invest/ grow	Scale up	Cost-effective sequential investments as market grows	Expand area of wireless coverage from cities to semi- urban areas
	Switch up	Switch products given a shift in underlying price/demand	Start offering dedicated wavelengths using DWDM in case of equipment price drops
	Scope up	Enter another industry cost- effectively	Start offering IPTV next to Internet connectivity
Defer/ learn	Study/start	Delay investment until more info/skill is acquired	Wait till competitor strategy is more clear
Disinvest/ shrink	Scale down	Shrink or shut down project as new info changes expected payoffs	Abandon one region if competitor drops prices there
	Switch down	Switch to more cost-effective and flexible assets as new info is obtained	Lease wavelengths instead of dark fiber in some regions of lower demand
	Scope down	Abandon operations in related industry if there is no further potential	Stop offering hot spot services if market does not take off

Three conditions for a ROA

l III ibbt

Three conditions for a ROA

as illustrated for the case of LTE deployment in Gent

Condition 1: uncertainty

Uncertainty concerning initial assumptions

- Customer uptake
- Price evolutions
- ...

uncertain user uptake

uptake uptake

Condition 2: Flexibility

Flexibility in decision

- According to the 7S framework
- Different paths available
- Example: fast or slow rollout

Condition 3: Timing

Phased investment Decisions to be made in future stages

bbt

Methodology for calculating option value

is starting from traditional static analysis

1. Execute standard NPV analysis

bbt

1. Execute standard NPV analysis

GENT

2. Identify the uncertainties

3. Identify the flexibility

4. Calculate the option value

4. Calculate the option value

4. Calculate the option value

Some options terminology

Some options terminology applied to the use case of LTE in Gent

option value

= what do you get
by executing the
option?
e.g. revenues for
Antwerp

execution price

= what does it cost to execute the option once you have it? e.g. deployment cost for Antwerp

103

option price

= what does it cost to obtain the option? e.g. bigger license for Antwerp

Evaluation a project with flexibility boils down to

comparing option value to option price

option value

104

what do you get
by executing the
option?
e.g. revenues for
Antwerp

= what does it cost to obtain the option? e.g. bigger license for Antwerp

Determining the value of an option

by comparing execution price with real project value

option value

what do you get
by executing the
option?
e.g. revenues for
Antwerp

- Value of option = end value + time value
 - End value = value if today was exercise date
 - Time value
 - Grows with a growing time to maturity
 - Grows with volatility of share value
 - Small when difference between S and X is big

Some more terminology

originating from financial options

European option

can only be exercised on the exercise date American option

can be exercised till the exercise data

Call option option holder has right to *buy* the asset Put option option holder has right to *sell* the asset

Option price = option premium

Price to acquire the option, price to acquire to right Exercise price = strike price

Price for which option holder can exercise the option (fixed)

Several calculation methods

for option values can be found in literature

Binomial tree model

- Only discrete values for input
- See toy example before
- Black and Scholes model
 - From financial options
 - Mathematical model
- Monte Carlo Analysis
 - Simulation based method
 - Spreadsheet approach
 - See demo in a minute

Binomial tree option valuation is the most intuitive method

- For European call option
- Assumes 2 possible end values

- Can be expanded for more time periods
 - software needed

Black and Scholes option valuation is not intuitive at all Formula for European call option

$$C = SN(d1) - Xe^{-rt}N(d2)$$
$$d1 = \frac{\ln(S/X) + rt + \sigma^2 t/2}{\sigma\sqrt{t}}$$
$$d2 = \frac{\ln(S/X) + rt - \sigma^2 t/2}{\sigma\sqrt{t}}$$

- N(d) = cumulative normal distribution
- X = exercise price of the option
- S = current value of the share
- σ^2 = variance of the return of the share per time period
 - = risk free interest rate

110

Assumptions

arbitrage-free pricing: financial transactions that make immediate profit without any risk do not exist (there is a general economic equilibrium)

stock prices S follow Brownian motion (random walk) $dS = \mu S dt + \sigma S dw$

Parameters used in Black and Scholes formula

for financial versus real options

	Stock option	Real option
X	exercise price of the option	investments required to carry out the project
S	value of the underlying stock	NPV of the cash flows generated by the investment project
σ	volatility of the stock	risk grade of the project
r	the risk-free interest rate	risk-free interest rate
t	life time of the option	time period where company has the opportunity to invest in the project

Monte Carlo analysis for option valuation demonstrated in demo

Sensitivity and Uncertainty Analysis

How do we measure the impact of uncertainty and flexibility?

Histograms

How to interpret?

114 III ibbt

Tornado charts

Uncertainty analysis

and the meaning of sensitivity analysis in there

Comparison

UNCERTAINTY ANALYSIS	SENSITIVITY ANALYSIS
 <u>OBJECTIVE</u>: Quantify and describe uncertainty. 	 <u>OBJECTIVE</u>: Relate input and output uncertainty Research prioritization Model simplification Factor mapping
 USES: Descriptive Statistics from Monte Carlo analyses Expected Value Variance Higher order moments 	 USES: Sensitivity Indices from Monte Carlo analyses Based on Rank Cor. Based on variance Based on MC Filtering Based on Lin.Regression → Tornado charts
	117 III ibbt connect.invovete.create

Relevance to ROA? Measure flexibility impact

Using: Expected value of model's output

- measures: global profitability
- One would expect that adding ROA to the business model would increase the model's expected NPV since it allows the manager to steer away from scenario's depleting NPV

Using: Variance of model's output

- measures: global uncertainty
- We would expect that the total variance of the project would have dropped since the manager can steer away from extreme outcomes.

Relevance to ROA? Measure flexibility impact

Using: Conditional Variance and Mean Value

- measures: Risk
- What is my expected loss in the worst case scenario?
- What is the confidence interval around this estimate?
- Using: First Order sensitivity Indices
 - measures: Relative importance inputs
 - Rank correlation based (Crystal Ball)
 - We would expect that the relative importance of some uncertainty sources has switched. Against some you can react against others you can't.

Let's return to our case: what did we expect?

✤ Variance NPV

- Lower overall uncertainty
- ♠ Expected value NPV
 - Global profitability increases
 - Positive option value
- ✤ Conditional Var & EV in negative scenario
 - Lower overall risk
- →Truncated distribution
 - Exit option

Let's return to our case: evaluation

No option:

- Expected NPV: 2.4m
- S.E. NPV: 5.8m

Abandon option:

- Expected NPV: 2.9m (+19%)
- S.E. NPV: 4.7m (-19%)
- Truncated distribution (visual)
- Expected negative NPV (+20%)

IVERSITEIT

Let's return to our case: what did we expect?

\clubsuit Sensitivity Indexes

• Certain input uncertainty is made less important

→Switch in relative importance of uncertainty

• Flexibility has more effect on certain types of uncertainty

Let's return to our case: evaluation

Different case studies

What cases can RO be applied to?

Case study overview

where we applied ROA before

- 1. Make or lease fiber network?
- 2. Which areas to deploy wireless sensor network?
- 3. Optimal cabinet size for FTTcab roll-out?

Do I install my own backhaul or do I lease dark fiber?

Belgian network where a fiber topology is needed

Several ownership models

for optical network deployment

Different ownership models

have different input information on cost and duration

Three conditions for a ROA

for the case Make or lease dark fiber

Flexibility within ownership model Possibilities to change model at contract end

In-/decrease capacity within certain scenario is a first form of flexibility

Switch between scenarios at contract end

is second form of flexibility

Phased decision

is included via flexible upfront decision

Methodology for calculation option value based on binominal tree for this case

Formulae behind the evaluation

show the difference with and without option

Formulae behind the evaluation

show the difference with and without option

 Single deployment path: no flexibility (average over all uncertain scenarios)

 $E_{uncertain traffic \, evolutions} [cost(a)]$

decision

а

point

Impact of flexibility

shows that lambda lease adopts better to change than IRU

Case study summary

Make or lease fiber network?

- Type of uncertainty (4 types of threats)
 - Operational Threats: Traffic Intensity uncertainty
- Option type (7S)
 - Switch option
- Calculation method
 - Binomial tree
 - Monte Carlo simulation
- Case results
 - Dark fiber lease outperform IRU on case study
 - Situation gets worse in case of abrupt changes

Case study overview

where we applied ROA before

- 1. Make or lease fiber network?
- 2. Which areas to deploy wireless sensor network?
- 3. Optimal cabinet size for FTTcab roll-out?

Three conditions for a ROA

for the case Which areas to deploy wireless sensor network

Area to deploy network in

Uncertainty

Both technical and behavioral uncertainties

Chance of getting fined

Sensor lifetime

ibbt

Flexibility

Choose the zone to install the PSN in

Timing Start small, decide later to scale

bbt
Methodology for calculation option value

based on simulations for this case

1. Execute a standard NPV analysis

Modeling costs and revenues

2. Identify the uncertainties

Input uncertainty impacts output

Distribution NPV Standard

3. Identify the flexibility

Different areas with different characteristics

4. Calculate the option value

Option to expand positively impacts result Distribution NPV Standard

bbt

Case study summary

Which areas to deploy wireless sensor network?

- Type of uncertainty (4 types of threats)
 - Operational sensor lifetime
 - Strategic impact on consumer behavior
- Option type (7S)
 - Scale up
- Calculation method: Monte Carlo simulation
- Case results
 - Scale option positively impacts case result

Case study overview

where we applied ROA before

- 1. Make or lease fiber network?
- 2. Which areas to deploy wireless sensor network?
- 3. Optimal cabinet size for FTTcab roll-out?

What is the optimal capacity to install in an FTTC rollout?

IIIibbt

Three conditions for a ROA for the case Optimal cabinet size for FTTcab roll-out Install large cabinet or small one with flexible extensions Flexibility Phased Uncertainty decision Customer uptake Extend small ROA cabinet later

Uncertainty

What is the expected customer uptake?

154

Flexibility

Different possible future migrations

bbt

Timing

The migration choice can be postponed

Methodology for calculation option value

based on simulations for this case

1. Execute a standard NPV analysis

with expected adoption small cabinet is best

/ERSITEI1

2. Identify the uncertainties

with range of adoptions, large cabinet is better on average

J ib

3. Identify the flexibility

Different possible future migrations

4. Calculate the option value

by comparing flexible path with static small cabinets

4. Calculate the option value

flexibility has more value than large cabinet installation

ROA

0.00

000,000,33

£5,000,000

shows that we can reduce the risk of negative outcome Install small cabinets Dynamic analysis Large cabinet 1,800 Notfor Commercial Use Notfor Commercial Use 1.800 1,600 1,600 1,400 1,400 Probability 100 1,200 Frequency 800 c Probability 00 1,200 Frequency 800 cy 600 600 Mean = £6,912,116

0.00

\$6,000,000

£5,000,000

£6,000,000

400

200

0

10% risk: NPV < £6,000,000

Certainty: 89.939

£7,000,000

£6,000,000

Mean = £6,865,486

%

£8,000,000

Infinity

8.3% risk: NPV < £6,000,000

£7,000,000

Certainty: 91.675

£8,000,000

4 Infinity

%

400

200

Case study summary

Optimal cabinet size for FTTcab roll-out

- Type of uncertainty (4 types of threats)
 - Strategic service uptake
 - Operational re-usable ducts
- Option type (7S)
 - Scale up install extra small cabinets
 - Switch up migrate to FTTP
 - Scope up offer enhanced services
- Calculation method: Monte Carlo simulation
- Case results
 - Small cabinets offer different options
 - These add significant value to change decision

Extensions

Modeling competitive behavior

Sources of uncertainty in telecom planning

allow to classify typical uncertain parameters

 Compliance Threa Regulatory change Corporate governar standards Radiation emission standards 	ats nce	 Operational Threats Technological change Traffic Intensity uncertainty Equipment Lifetime uncertainty 						
Strategic Threats	Tele Uncer	com tainty Financ	ial Threats					
 Competition uncertain Adoption uncertain Willingness to pay evolution 	ty	 Component price evolution Evolution of borrowing capacity 						

Competition uncertainty

How will competitors react to my strategy?

Real options and strategies

- Scope: offering new services
- Scale: entering a new geographic market
- Switch: upgrading technology

Impacts the competitive equilibrium

Game Theory

Modeling competitive interaction

Game theory is "aimed at modeling situations in which decision makers have to make specific actions that have mutual, possibly conflicting, consequences" (Felegyhazi & Hubaux, 2006, p. 1).

Solving the game

Identifying the equilibria

• Nash

- No player can gain a higher payoff by unilaterally changing his strategy
- Competition equilibrium
- Pareto
 - No player can gain a higher payoff without reducing the payoff of another player
 - Social optimum

Techno-economic Game Theory

		2. Municipality														
		enabler independent			t	independent		independent			independent					
1. Commercial Wifi	3. 3G				18		19		20			21				
18	Scenario 1	0.33	1.81	0.52	-1.75	0.23	-0.17	-1.73	0.12	-0.10	-1.67	-0.04	0.07	-1.61	-0.26	0.23
	Scenario 2	0.18	1.68	0.87	-2.19	-0.15	0.40	-2.14	-0.26	0.43	-2.06	-0.44	0.55	-2.00	-0.70	0.69
	Scenario 3	0.05	1.56	1.10	-2.57	-0.51	0.80	-2.52	-0.62	0.85	-2.43	-0.82	0.96	-2.35	-1.10	1.05
	Scenario 4	0.21	1.70	0.74	-2.16	-0.10	0.26	-2.10	-0.21	0.30	-2.02	-0.40	0.41	-1.95	-0.64	0.52
19	Scenario 1	0.26	1.71	0.57	-1.77	0.36	-0.10	-1.74	0.26	-0.04	-1.67	0.08	0.13	-1.60	-0.13	0.29
	Scenario 2	0.12	1.59	0.91	-2.19	0.00	0.43	-2.14	-0.12	0.48	-2.06	-0.29	0.60	-1.98	-0.55	0.73
	Scenario 3	0.00	1.48	1.13	-2.61	-0.35	0.84	-2.54	-0.44	0.89	-2.44	-0.67	1.00	-2.36	-0.92	1.07
	Scenario 4	0.16	1.62	0.78	-2.13	0.03	0.30	-2.07	-0.07	0.34	-2.00	-0.25	0.46	-1.92	-0.49	0.57
20	Scenario 1	0.20	1.64	0.76	-1.83	0.58	0.07	-1.78	0.47	0.14	-1.69	0.30	0.30	-1.62	0.10	0.45
	Scenario 2	0.07	1.53	1.08	-2.28	0.22	0.57	-2.25	0.10	0.62	-2.15	-0.06	0.75	-2.06	-0.30	0.86
	Scenario 3	-0.05	1.42	1.27	-2.67	-0.12	0.98	-2.63	-0.22	1.02	-2.53	-0.44	1.08	-2.44	-0.68	1.17
	Scenario 4	0.11	1.57	0.93	-2.22	0.25	0.42	-2.18	0.15	0.47	-2.08	-0.02	0.58	-1.99	-0.26	0.71
21	Scenario 1	0.13	1.57	0.93	-1.94	0.79	0.25	-1.90	0.70	0.31	-1.80	0.53	0.47	-1.73	0.35	0.55
	Scenario 2	0.00	1.45	1.21	-2.40	0.44	0.72	-2.33	0.34	0.77	-2.22	0.16	0.88	-2.15	-0.07	1.01
	Scenario 3	-0.12	1.34	1.40	-2.82	0.13	1.07	-2.77	0.00	1.11	-2.65	-0.19	1.20	-2.53	-0.43	1.29
	Scenario 4	0.04	1.49	1.05	-2.32	0.48	0.55	-2.28	0.39	0.60	-2.18	0.22	0.73	-2.08	-0.01	0.84

- Modeling all strategic combinations
- Finding the equilibrium

Real Options vs. Game Theory

Is it a strategy or an option?

Real Options

- Managerial flexibility
- Counter uncertainty
- Competition as external factor

Game Theory

- Dynamic interaction between competitors
- Competition as internal factor

Option games

Combining Real Options and Game Theory

McKinsey, "Option Games": Filling the hole in the valuation toolkit for strategic investment, available online

bbt

Option Games

Combining Real Options and Games

173

Conclusions

- ROA is a way to formalize a good practice
 - "I choose this solution because it is more flexible"

- ROA is a way to formalize a good practice
 - "I choose this solution because it is more flexible"
- There are 3 essential conditions

- ROA is a way to formalize a good practice
 - "I choose this solution because it is more flexible"
- There are 3 essential conditions
- Find all uncertain parameters and model them

- ROA is a way to formalize a good practice
 - "I choose this solution because it is more flexible"
- There are 3 essential conditions
- Find all uncertain parameters and model them
- Describe all flexibility in the project

- ROA is a way to formalize a good practice
 - "I choose this solution because it is more flexible"
- There are 3 essential conditions
- Find all uncertain parameters and model them
- Describe all flexibility in the project
- Quantify the value of these options

References

Real options & sensitivity analysis methodology

- T. Copeland, P. Keenan, "How Much is Flexibility Worth?", The McKinsey Quarterly, 1998, vol. 2, 38-49.
- L. Trigeorgis (Ed.), "Real Options in Capital Investment: Models, Strategies, and Applications", Praeger, 1995.
- J. C. Hull, "Options, futures, and other derivates", 5de ed., Pearson Education, 2003.
- J. Alleman, "A new view on telecommunications economics", Telecommunications Policy, 2002, vol. 26, pp. 87-92. – not about RO???
- W. De Maeseneire, "The real options approach to strategic capital budgeting and company valuation", ISBN: 2-8044-2318-2, Financiële Cahiers, Larcier, 2006.
- Saltelly et al., "Global Sensitivity Analysis, The Primer", ISBN: 978-0-470-05997-5, John Wiley & Sons Ltd, 2008.

Application of real option in cases

- Mathieu Tahon, Sofie Verbrugge, Peter J. Willis, Paul Botham, Didier Colle, Mario Pickavet, Piet Demeester, *Migration to Next Generation Access Networks: a Real Option Approach*, Real Option Conference 2012, London, UK, June 2012
- Mathieu Tahon, Sofie Verbrugge, Bart Lannoo, Jan Van Ooteghem, Pieter De Mil, Mario Pickavet, Piet Demeester, Parking Sensor Network: Economic Feasibility Study of Parking Sensors in a City Environment, CTTE 2010, the 9th Conference of Telecommunication, Media and Internet Techno-Economics, Ghent - Belgium, June 7-9, 2010
- S. Verbrugge, D. Colle, W. De Maeseneire, P. Demeester, Valuing the flexibility in fiber deployment network planning: an application to a Belgian network, 12th International Conference on Real Options: Theory meets Practice, Rio de Janeiro, Brasil, 9-12 July 2008
- S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, "Cost versus flexibility of different capacity leasing approaches on the optical network layer", published in Lecture Notes in Computer Science, proceedings of ONDM2007, the 11th International IFIP TC6 Conference on Optical Network Design and Modeling, Vol. 4534, May 2007.

Application of real option in cases

- Stragier, J., Seys, C., Evens, T., Evenepoel, S., Vanooteghem, J., & Casier, K. (2012). A priori forecasting of FTTH uptake : coupling segmentation forecasting to timing forecasting. *11th Conference of Telecommunication, Media and Internet Techno-Economics, Proceedings*. Presented at the 11th Conference of Telecommunication, Media and Internet Techno-Economics (CTTE - 2012), Athens, Greece.
- Evenepoel, Simon, Jan Van Ooteghem, Sofie Verbrugge, Bart Lannoo, Didier Colle, and Mario Pickavet. 2012. "Can crowdsourced WiFi be a viable strategy to provide open internet access in a municipality?" In *The 51st International FITCE (Federation of Telecommunications Engineers of the European Community) Congress, Media and Internet Techno-Economics, Proceedings*, Poznan, Poland.

Tools

Crystal Ball

http://www.oracle.com/us/products/applications/crystalbal l/index.html

TESS – java implementation

Marlies Van der Wee, Koen Casier, Karel Bauters, Sofie Verbrugge, Didier Colle, Mario Pickavet, A modular and hierarchically structured techno-economic model for FTTH deployments. Comparison of technology and equipment placement as function of population density and number of flexibility point, ONDM 2012.

Questions?

Mathieu Tahon Sofie Verbrugge Simon Evenepoel

> IBBT - IBCN 22/02/2011 Gent

